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Invalidity of the spatiotemporal white noise assumption for a stochastic diffusion-type equation
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I point out that the Gaussian white noise assumption, where the random variables have the spatiotemporal
d-function-type correlation, for the Edwards-Wilkinson equation with periodic boundary condition is not valid
in dimensions higher than two, because it leads to divergent fluctuation of surface height. It is stressed that the
physical solution should be irrelevant to the choice of the cutoff. One finds through exploring a continuum
limit that the correlation should be less singular than thed function and we have a finite solution with the
vanishing roughness exponent.@S1063-651X~97!50402-8#

PACS number~s!: 05.40.1j, 68.35.Ct, 02.50.Ey, 02.60.Cb
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The purpose of this paper is to call attention to the pro
bilistic property of random variables in stochastic diffusio
type equations~SDEs!. In these cases a set of stochastic va
ables depending on both position and time is a subjec
study. What I would like to emphasize here is that the s
tiotemporal Gaussian white noise assumption occasional
not valid in dimensions higher than two. Indeed for t
growing surface problem described by a SDF@1–5# the di-
vergent fluctuation of surface height results from this
sumption. Introducing a cutoff length presenting an unde
ing microscopic unit such as a lattice constant may av
outwardly the divergence, though the surface fluctuation
pends strongly on the cutoff. However, the variance abov
a macroscopic quantity irrelevant to the choice of cutoff,
that it should take a finite value in the vanishing limit of th
cutoff, insofar as the SDE describes properly a physical p
nomenon as a continuum model. In order to resolve the c
tradiction, the stochastic property of the random variable
examined through exploring a continuum limit of a stoch
tic difference equation to the SDE. Then we find, throug
linear theory, that the correlation between the stochastic v
ables must be less singular than thed function in dimensions
higher than two.

The Langevin equations including a diffusion term ha
been often studied as a tool to describe mathematic
physical phenomena in wide fields@6#. However, the careles
551063-651X/97/55~2!/1235~4!/$10.00
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use of the spatiotemporal white noise assumption may
the risk of leading to errors. The fact mentioned in the p
ceding paragraph has rarely been recognized in the phy
community, so that misleading descriptions are found in
literature. Simultaneously we will also propose the quest
of how to carry out numerical integrations of the SDEs.
naive integration is pointed out to bring about mistakes
casionally. If one attempts to study more interesting eq
tions such as the Kardar-Parisi-Zhang equation@7#, careful
examination of the random variables is required, because
nonlinearity does not always guarantee to counterbalance
failure of the assumption.

Our subject is to study exhaustively the following simp
but basic equation,

]h~r ,t !/]t5n¹2h~r ,t !1h~r ,t !, ~1!

which models in the simplest way the dynamics of growi
surfaces with self-affine symmetry@1–5#. This is often called
the Edwards-Wilkinson~EW! equation@8#. The height of the
surface,h(r ,t), is measured att from a position r of a
d-dimensional substrate with linear size ofL (rP@0,L#d).
The periodic boundary condition, that is,h(r1Lel ,t)
5h(r ,t) with a unit vectorel along thel th axis, is assumed
which meets the growing surface problem. The first term
the right hand side of Eq.~1! describes the effect of surfac
R1235 © 1997 The American Physical Society
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R1236 55KATSUYA HONDA
tension smoothing the surface. The noiseh(r ,t) has zero
mean,^h(r ,t)&50, and its correlation is given as

^h~r ,t !h~r 8,t8!&52Ddd~r2r 8!d~ t2t8!, ~2!

that is, we usually assume forh(r ,t) the d-function-type
correlated noise with respect to space and time. The rou
ness of the surface is estimated by height fluctuat
w(L,t)[^{ h(r ,t)2^h(r ,t)&} 2&1/2. Our purpose is to derive
a scaling form ofw(L,t) expressed for largeL and t as @9#

w~L,t !5LaC~ t/Lz! ~3!

and to calculate the roughness exponenta ~or the Hurst ex-
ponent for self-affine fractals! and the dynamic exponentz as
functions ofd. The scaling functionC(x) increases asxb for
sufficiently smallx and approaches a saturation value asx is
increased beyond a crossoverxc.1. The temporal scaling
exponentb is given byb5a/z. Hereafter the cases ofd
,1 will be abandoned due to their unphysical situation.

Since Eq.~1! is a linear equation, we have easily

w2~L,t !5~D/n!E
2p/L<k

ddk

~2p!d
$12exp~22nk2t !%/k2

~4!

for an initial conditionh(r ,0)50, which seems to satisfy th
scaling form of Eq.~3! with a5(22d)/2 andz52.

In dimensions higher than two,d.2, however, a diver-
gence of Eq.~4! is brought out from modes with very sho
wavelength~ultraviolet divergence!. Of course infinitesimal
short modes should be considered to have no meaning
a physical point of view, because Eq.~1! is constructed in a
coarse-grained sense. In order to avoid the divergence
may then take into account the cutoff wave vectorL, pro-
portional inversely to underlying microscopic size such a
lattice constant@3,5,10#. However, we recall that introducin
L is valid only if the results eventually obtained do not d
pend on the choice ofL. Neverthelessw(L,t) in Eq. ~4!, as
a macroscopic quantity, depends strongly onL in cases of
d.2. Anyway a finite integration in Eq.~4! estimated in any
conventional way gives a negative value ofa for d.2
@3–5,10#, which is not acceptable because 0<a<1 is re-
quired from a mathematical sense@11#. As far as I know, no
one has yet obtained the correct exponents ford.2.

Now we examine the probabilistic property of the rando
variables. In order to give them definitely, we start with
discrete version, where the continuum limit should be st
ied carefully. We divide the substrate into (2N)d cells with
linear size ofa. The positions of lattice points are denoted
xi5ai usingd-dimensional integersi5( i 1 ,i 2 , . . . ,i d) with
i l50,61, . . . ,6N ( l51,2, . . . ,d). The time is also dis-
cretized ast j5 j t ( j50,1, . . . ) with time stept. The dif-
ference for Eq.~1! is written in the Euler formula as

h~xi ,t j11!5h~xi ,t j !1~nt/a2!(
l51

d

$h~xi1ael ,t j !

22h~xi ,t j !1h~xi2ael ,t j !%

1B~xi ,t j !, ~5!
h-
n

m

e

a

-

-

whereel is a unit vector along thel th axis@12#. The random
variablesB(xi ,t j ) are supposed to be Gaussian and they
distributed independently on each space-time lattice po
Their correlation is then expressed as

^B~xi ,t j !B~xi 8 ,t j 8!&52Da2ft22cd i1 ,i18d i2 ,i28•••d i d ,i d8d j , j 8 .

~6!

For convenience below we have introduced two expone
f andc. Keep in mind that Eq.~2! corresponds tof5d and
c51. Although we have here assumed the random varia
to be of Ito type, the conclusion remains unchanged for th
of Stratonovich type in linear problems.

The discretization of Eq.~1! is not restricted to the Eule
formula above. Since our purpose is to see how the stoc
tic variables can be defined in a continuum limit, however
is enough for our purpose to consider only the Euler form
~5! as a prototype. To make sure of it, I have examined t
the implicit Euler method for discretization, written as@12#

h~xi ,t j11!5h~xi ,t j !1~nt/a2!(
l51

d

$h~xi1ael ,t j11!

22h~xi ,t j11!1h~xi2ael ,t j11!%1B~xi ,t j !,

~7!

leads to the same conclusion obtained below.
The spatial Fourier transformation ofh(xi ,t j ),

ĥ~kn ,t j !5~2N11!2d(
$ i%

e2 ikn•xih~xi ,t j !, ~8!

is useful to solve Eq.~5! under the periodic boundary cond
tion. The discrete wave vectorskn5(kn1,kn2, . . . ,knd) are

defined by knl52pnl /(L1a), using nl50,61, . . . ,6N

( l51,2, . . . ,d). The solution of Eq.~5! for the initial con-
dition h(xi ,0)5ĥ(kn,0)50 can be immediately obtained a

ĥ~kn ,t j11!5 (
j 850

j

@12Y~kn!#
j2 j 8B̂~kn ,t j 8!, ~9!

using Y(kn)5(4nt/a2)( l51
d sin2(knla/2) for abbreviation.

Substituting Eq.~9! with Eq. ~6! gives

w2~L,t j11!52Da2ft22c~2N11!2d

3(
$n%

8 F12$12Y~kn!%
2 j

12$12Y~kn!%
2 G . ~10!

( { n}
8 stands for(n152N

N (n252N
N •••(nd52N

N , excluding the

n50 mode.
The continuum limit of Eq. ~10! is taken through

a,t→0 with L and t fixed, then Eq.~5! returns back to Eq.
~1!. To estimate Eq.~10! it is useful that the( { n}

8 is divided
into two parts;

(
$n%

8 5 (
n152Nc

Nc

(
n252Nc

Nc

••• (
nd52Nc

Nc

1 ~other terms!,

~11!
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55 R1237INVALIDITY OF THE SPATIOTEMPORAL WHITE . . .
Nc being such an integer that 1!Nc!N with a fixed ratio to
N, b5Nc /N!1. Once again the first sum is noted not
include then50 term.

In the first sum of Eq.~11! we can approximateY(kn) to
ntkn

2, which leads to

~D/n!ad2ft12cE •••E
V

$12exp@22nk2t#%/k2

3)
l51

d

~dkl /2p!, ~12!

using {12Y(kn)}
2t/t→exp(22nkn

2t) as t→0. Here the
integration region is V5ˆù l51

d { kl ;ukl u<2pb/
a} ‰ùˆù l51

d { kl ;ukl u<2p/L} ‰c, where ˆ•••‰c is a comple-
ment set of {•••}. This is the most dominant contribution t
w2(L,t) arisen from the first sum in the limit. Note that th
above procedure fails ford.2 because the integration in Eq
~12! diverges asa tends to zero.

In the other sums of Eq.~11!, we put ynl5pnl /(2N

11). Since Y(kn) is finite there @Y(kn)>(4nt/
a2)sin2(pb/2)#, {12Y(kn)}

2t/t vanishes through taking th
limit of t→0 under fixed conditions:

s[t/a2,~2nd!21. ~13!

The latter condition ensuringu12Y(kn)u,1 appears when
ever we integrate numerically partial differential equations
parabola type in the Euler formula@12#. Using the implicit
Euler formula, the condition is not necessary@12#. Then we
have for the second contribution tow2(L,t),

~D/4n!s12ca42f22cE •••E
V̄
F(
l51

d

sin2yl22ns

3S (
l51

d

sin2yl D 2G21

)
l51

d

~dyl /p!. ~14!

V̄ is a peripheral region ofV scaled appropriately or

V̄5 Hù
l51

d

$yl ;uyl u<p/2%Jù Hù
l51

d

$yl ;uyl u<pb/2%J c.
The integration in Eq.~14! is always bounded.

From Eqs.~12! and~14!, we see that the condition resul
ing in a finitew(L,t) for d,2 through the continuum limit
is satisfied if and only if

f5d and c51, ~15!

while Eq. ~14! vanishes in this limit. Ford,2 we could
recover Eq.~4! with a5(22d)/2 andz52, which has been
obtained by the direct integration of Eq.~1! with Eq. ~2!, that
is, under the spatiotemporal white noise assumption.

Ford.2, an infrared divergence does not occur. We ha
then immediately Eq.~14!, where the integration region i
replaced with Ṽ5ù l51

d { yl ;uyl u<p/2}. In order to let
w(L,t) be finite, the condition

42f22c50 ~16!
f

e

must be satisfied. If the spatiotemporal white noise assu
tion is adopted (f5d,c51),w(L,t) no longer has physica
meaning because of its infiniteness. The resultingw(L,t) is
independent ofL and t, indicatinga5b50.

Keeping the continuum version of Eq.~1!, we can also
derive the same conclusion above@13#. To this end we study
the noise correlation, instead of Eq.~2!,

^h~r ,t !h~r 8,t8!&52D@R~a!Da~r2r 8!#@T~t!Dt~ t2t8!#,
~17!

whereDa(r )@Dt(t)# is a sharply localized function ofr [ t]
around the origin with narrow widtha ~t!, which corre-
sponds to some microscopic size existing in phenomena
der consideration such as a lattice constant. For exam
Da(r )5exp@2r2/(2a2)# and Dt(t)5exp@2t2/(2t2)#. As the
microscopic sizesa andt are decreased, the respective ma
nitude is assumed to grow as

R~a!}a2f, T~t!}t2c. ~18!

Notice again that Eq.~2! corresponds tof5d and c51.
Requiring w(L,t) to be finite in the limits ofa→0 and
t→0 under fixeds5t/a2 gives the relations~15! and ~16!
between the exponents,f and c, for 1<d,2 and d.2,
respectively. The reader may consult Ref.@13# about the de-
tails.

Apart from the growing surface problem, I remark here
a property of the functionR(a)Da(r ). If we consider for
simplicity the case ofc51 @stochastic process of the Wiene
~Markov! type#, f52 should be selected irrespective of sp
tial dimensions wheneverd.2. Thereby whend.2,
*ddr R(a)Da(r )}a

d2f goes to zero in the limit ofa→0.
lima→0R(a)Da(r ) is considered as a new type of distributio
~functional!, which is less singular thandd(r ). Mathematical
establishment is eagerly expected.

Now let us imagine that we try to integrate Eq.~1! nu-
merically. In this task we usually calculate Eq.~10! under the
condition thatL,t→` with a andt fixed. We expect that an
asymptotic form ofw(L,t) is identical with one obtained
through the continuum limit. I will emphasize below, how
ever, that the two approaches do not always reach the s
goal.

The estimation ofw(L,t) in Eq. ~10! is also carried out by
dividing (n

8 into two parts as in Eq.~11!. The first sum yields
Eq. ~12! by replacing {12Y(kn)}

2t/t with exp(22nk2t) be-
causeY(kn).ntkn

2<ntd(pb)2/a2!1. Even whend.2,
however, the divergence of the integral does not occur in
limit due to the finitely discretized unita. While Eq. ~12! is
proportional toL22d for d,2, its most dominant term is a
constant@14# independent ofL and t for d.2. On the other
hand, the other sums in Eq.~11! yield Eq. ~14! for t
@t/@2u ln{12Y(kn)} u#(>a2 /@2n(pb)2#), giving L0 order
term for any dimensions. The condition~13! is also neces-
sary for the Euler formula to keepu12Y(kn)u less than
unity.

It is concluded therefore that through the latter limit~L
and t→` with fixed a and t! we have the same exponen
for a andz as obtained through the continuum limit~a and
t→0 with fixed L and t!. Remember, however, that th
above can be obtained without specifying the values of
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R1238 55KATSUYA HONDA
andc. Even if we putf5d andc51 ~the spatiotempora
Gaussian white noise! for d.2, the finite value ofw(L,t) is
realized, contradicting the result of the continuum limit. Th
suggests in general that we must reconsider caref
whether the naive numerical integration of SDEs gives
continuum limit result.

In summary we have clarified the following:
~1! The scaling exponents of the EW model are

a5~22d!/2, b5~22d!/4, z52 for 1<d,2,

a5b50, z52 for d.2.

There should appear logarithmic corrections whend52.
Negativea for d.2 cannot be justified@3–5,10#.

~2! In spaces with dimension higher than two, the cor
lation between the random variables should be weake
infinitesimally to obtain the physical solution irrelevant
the choice of the cutoff. The exponents satisfying the relat
~16! correspond to the less singular correlation than thd
function. Nevertheless the random noises are indispens
to exclude a simply decaying solution. This is understa
able from an intuitive argument; while in lower dimensio
fluctuations induced by the spatiotemporal Gaussian w
noise are crucial in that they keep accumulating to yield
rough surface solution; they are too strong to form the s
face in higher dimensions due to the fluctuation accumu
tion from surroundings. If one continues to add the noise
the system, the solution may become the sum ofd functions.

~3! We have given an example that the two limits~a,
t→0 with fixedL,t andL,t→` with fixed a, t! do not lead
to the same results. Ford.2, the latter approach results i
providing a finitew(L,t) even in the case of being inherent
infinite. I would like to conjecture that there exist such SD
elsewhere. For these cases, in order to be consistent wit
e
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original continuum model, the numerical integration shou
be carried out by taking limits ofa, t→0 for givenL andt,
however it looks troublesome.

~4! There are a lot of discrete versions converging in
Edwards-Wilkinson equation through continuum limits.
the present paper I have taken into account three routes
Eqs. ~5!, ~7!, and ~1! with Eq. ~17!. For d,2, we have the
same result ofw(L,t) through all routes, while ford.2 the
value ofw(L,t) ~5const! depends on how to approach th
continuum model due to different microscopic situation
However, the exponents including zero themselves rem
unchanged irrespective to the routes.

The above conclusions have been obtained within a lin
theory. However, the assertion that the spatiotemporal w
noise assumption turns out valid due to some nonlinear ef
is necessary to be proved. For the Kardar-Parisi-Zhang e
tion @7#, therefore, careful reconsideration of random va
ables must be required ford.2. Work on this problem is
planned for the near future.

I would like to refer mathematical literature, where th
related problems have been treated. In Ref.@15# the theorem
that a heat equation with a noisy force, equivalent to
Kardar-Parisi-Zhang equation, has a unique distributi
valued solution ford.2 has been proved. Unfortunately th
solution belongs to theL2 class, being inappropriate for th
growing surface problem. In addition Walsh showed in R
@16# that the stochastic wave equation has only a solution
a distribution valued stochastic process ford>2.
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