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| point out that the Gaussian white noise assumption, where the random variables have the spatiotemporal
S&function-type correlation, for the Edwards-Wilkinson equation with periodic boundary condition is not valid
in dimensions higher than two, because it leads to divergent fluctuation of surface height. It is stressed that the
physical solution should be irrelevant to the choice of the cutoff. One finds through exploring a continuum
limit that the correlation should be less singular than gieinction and we have a finite solution with the
vanishing roughness exponef1063-651X97)50402-9

PACS numbsg(s): 05.40:], 68.35.Ct, 02.50.Ey, 02.60.Cb

The purpose of this paper is to call attention to the probause of the spatiotemporal white noise assumption may run
bilistic property of random variables in stochastic diffusion-the risk of leading to errors. The fact mentioned in the pre-
type equation$SDES. In these cases a set of stochastic vari-ceding paragraph has rarely been recognized in the physical
ables depending on both position and time is a subject ofommunity, so that misleading descriptions are found in the
study. What | would like to emphasize here is that the Spaliterature. Simultaneously we will also propose the question
tiotemporal Gaussian white noise assumption occasionally i§f how to carry out numerical integrations of the SDEs. A
not valid in dimensions higher than two. Indeed for thenaive integration is pointed out to bring about mistakes oc-
growing surface problem described by a SPIF-5] the di- casionally. If one attempts to study more interesting equa-
vergent fluctuation of surface height results from this asfions such as the Kardar-Parisi-Zhang equafioh careful
sumption. Introducing a cutoff length presenting an underly-8Xamination of the random variables is required, because the
ing microscopic unit such as a lattice constant may avoidionlinearity does not always guarantee to counterbalance the
outwardly the divergence, though the surface fluctuation def@ilure of the assumption. , o
pends strongly on the cutoff. However, the variance above is OUr subject is to study exhaustively the following simple
a macroscopic quantity irrelevant to the choice of cutoff, sgPut basic equation,
that it should take a finite value in the vanishing limit of the
cutoff, insofar as the SDE describes properly a physical phe- ah(r,t)/ot=vVh(r,t)+ 5(r,1), (1)
nomenon as a continuum model. In order to resolve the con-
tradiction, the stochastic property of the random variables isvhich models in the simplest way the dynamics of growing
examined through exploring a continuum limit of a stochas-surfaces with self-affine symmetfg-5]. This is often called
tic difference equation to the SDE. Then we find, through athe Edwards-WilkinsoEW) equation8]. The height of the
linear theory, that the correlation between the stochastic varisurface,h(r,t), is measured at from a positionr of a
ables must be less singular than thiunction in dimensions d-dimensional substrate with linear size bf(r e [0,L]9).
higher than two. The periodic boundary condition, that id)(r+Lg,t)

The Langevin equations including a diffusion term have=h(r,t) with a unit vectorg along thelth axis, is assumed,
been often studied as a tool to describe mathematicallyvhich meets the growing surface problem. The first term of
physical phenomena in wide fielf8]. However, the careless the right hand side of Eq1) describes the effect of surface
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tension smoothing the surface. The noigér,t) has zero Wwhereg is a unit vector along thith axis[12]. The random

mean,(7(r,t))=0, and its correlation is given as variablesB(x; ,t;) are supposed to be Gaussian and they are
distributed independently on each space-time lattice point.
(n(r,t)yn(r' t"))y=2D&%r—r")s(t—t"), (2)  Their correlation is then expressed as

that is, we usually assume foy(r,t) the &function-type  (B(X . tj)B(Xi/ tj))=2Da 77 V6; i1, i’ & il 6 -
correlated noise with respect to space and time. The rough- (6)
ness of the surface is estimated by height fluctuation

w(L,t)=({h(r,t)—(h(r,t))}?)*2 Our purpose is to derive For convenience below we have introduced two exponents,

a scaling form ofw(L,t) expressed for large andt as[9] ¢ andy. Keep in mind that Eq(2) corresponds tep=d and
=1. Although we have here assumed the random variables

w(L,t)=L*¥(t/L?) (3)  tobe of Ito type, the conclusion remains unchanged for those
of Stratonovich type in linear problems.
and to calculate the roughness exponerfor the Hurst ex- The discretization of Eq(1) is not restricted to the Euler

ponent for self-affine fractalsnd the dynamic exponentas ~ formula above. Since our purpose is to see how the stochas-
functions ofd. The scaling function? (x) increases as” for  tic variables can be defined in a continuum limit, however, it
sufficiently smallx and approaches a saturation valuas  is enough for our purpose to consider only the Euler formula
increased beyond a crossover=1. The temporal scaling (5) as a prototype. To make sure of it, | have examined that
exponentg is given by 8= a/z. Hereafter the cases af  theimplicit Euler method for discretization, written f52]

<1 will be abandoned due to their unphysical situation.

d
Since Eq.(1) is a linear equation, we have easily

h(xi,tj+1) =h(x; ,tj)+(vr/a2)|21 {th(xi+ag,tj,1)

dd
k
(L t)= (D/V S ﬁ{l eXF( 2Vk2t)}/k2 —2h(Xi ,tj+l)+h(xi_aQ ’ti+1)}+ B(Xi ,tj),
4 0
for an initial conditionh(r,0)=0, which seems to satisfy the leads to the same conclusion obtained below.
scaling form of Eq«(3) with a=(2—d)/2 andz=2. The spatial Fourier transformation bf{x; ,t;),

In dimensions higher than twal>2, however, a diver-
gence of Eq(4) is brought out from modes with very short
wavelength(ultraviolet divergence Of course infinitesimal
short modes should be considered to have no meaning from
a physical point of view, because Ed) is constructed in a is useful to solve Eq(5) under the periodic boundary condi-
coarse-grained sense. In order to avoid the divergence, wi®n. The discrete wave vectotsn—(knl an . ) are
may then take into account the cutoff wave vectgrpro- defmed by k, =2n,/(L+a), using n,= 0,_1 ... =N
portional inversely to underlying microscopic size such as at d)l The solution of Eq(5) for the initial con-

lattice constanf3,5,10. However, we recall that introducing - _ . . :
A is valid only if the results eventually obtained do not de-d'tIon h(X"O)_h(k“’o)_o can be immediately obtained as

pend on the choice ok. Neverthelessv(L,t) in Eq. (4), as j

a macroscopic quantity, depends strongly fonn cases of h )= — i-i'g -

d>2. Anyway a finite integration in Ed4) estimated in any Nkn tj+2) g L= Yk P77 BCkn 151), ®
conventional way gives a negative value offor d>2

[3-5,10, which is not acceptable because@<1 is re- using Y(kn)=(4vr/a2)2,":15in2(knla/2) for abbreviation.
quired from a mathematical sengkl]. As far as | know, no  Substituting Eq(9) with Eq. (6) gives

one has yet obtained the correct exponentsifer2.

F](kn,tj)=(2N+1)_d% e M %ih(x; b)), ®)

Now we examine the probabilistic property of the random wA(L,t; 1) =2Da *7" ¥(2N+1) "¢

variables. In order to give them definitely, we start with a 2i
discrete version, where the continuum limit should be stud- x> 1-{1-Y(ko)} (10)
ied carefully. We divide the substrate intoN} cells with w1 1-{1-Y(kn}
linear size ofa. The positions of lattice points are denoted by |
x;=ai using d-dimensional integers=(iy,i,, ....ig) with 2., stands forEle_NE,’}‘zz_N---E,ﬁ'd:_N, excluding the
h=0,%x1,..., =N (I=1,2,...,d). The time is also dis- n=0 mode.
cretized asj=j7 (j=0,1,...) with time stepr. The dif- The continuum limit of Eq.(10) is taken through
ference for Eq(1) is written in the Euler formula as a,7—0 with L andt fixed, then Eq(5) returns back to Eq.

d (1). To estimate Eq(10) it is useful that theE{'n} is divided

(% ty42) =n0x ) +(vrfa®) 3 e +ae ) Into two parts;
C NC
—2h(x,t)) +h(x;—ae,t))} X' =2 > - >+ (other termg
{n} n;=-—Ng nz=-Ng ng=—N¢

+B(X 1)), (5) (11)
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N, being such an integer thatIN.<N with a fixed ratio to ~ must be satisfied. If the spatiotemporal white noise assump-
N, b=N./N<1. Once again the first sum is noted not totion is adopted ¢=d,¢=1), w(L,t) no longer has physical

include then=0 term. meaning because of its infiniteness. The resultirfg ,t) is
In the first sum of Eq(11) we can approximat¥(k,) to ~ independent of. andt, indicatinga==0.
»7k2, which leads to Keeping the continuum version of E{l), we can also

derive the same conclusion abdus3]. To this end we study
the noise correlation, instead of E@),

(ﬂ(r,t)ﬂ(f’,t')>=2D[R(a)Aa(r—r’)][T(T)AT(t—t’)(]ﬁ)

(D/v)adf‘f’rl*‘/’J' e fﬂ{l— exfd — 2vk?t]}/k?

d
H (dk/2m), (12
= whereA,(r)[A,(t)] is a sharply localized function af [t]
) around the origin with narrow widtla (7), which corre-
using {1-Y(kn)}?'"—exp(-2ut) as 7—0. Here the gponds to some microscopic size existing in phenomena un-
integration  region is  Q={N{L {k:lk|<27b/  der consideration such as a lattice constant. For example,
a}In{N{ {ki;lk|<2m/L}}°, where{---}° is a comple- A (r)=exg—r%(2a?)] and A (t)=exg—t¥(27)]. As the
ment set of {--}. This is the most dominant contribution to microscopic sizea and r are decreased, the respective mag-
w?(L,t) arisen from the first sum in the limit. Note that the nitude is assumed to grow as
above procedure fails fal> 2 because the integration in Eq.
(12) diverges as tends to zero. R(a)xa ¢, T(r)ocr Y. (19

In the other sums of Eq(ll), we put yn|=77n|/(2N
+1). Since Y(k,) is finite there [Y(k,)=(4v7/  Notice again that Eq(2) corresponds tap=d and y=1.
a?)sind(mb/2)], {1 — Y(k,)} 2/ vanishes through taking the Requiringw(L,t) to be finite in the limits ofa—0 and

limit of 7— 0 under fixed conditions: 7— 0 under fixedo = T/a2 giVeS the relati0n$15) and (16)
between the exponentg and ¢, for 1<sd<2 andd>2,
o=71la’<(2vd) L. (13 respectively. The reader may consult Héf3] about the de-
tails.
The latter condition ensurinl—Y(k,)|<1 appears when- Apart from the growing surface problem, | remark here on

ever we integrate numerically partial differential equations ofa property of the functiorR(a)A,(r). If we consider for
parabola type in the Euler formu[d2]. Using the implicit  simplicity the case ofy=1 [stochastic process of the Wiener
Euler formula, the condition is not necess@ty]. Then we  (Markov) type], =2 should be selected irrespective of spa-
have for the second contribution (L ,t), tial dimensions wheneverd>2. Thereby whend>2,

. fd9r R(a)A,(r)=a’" ¢ goes to zero in the limit oA—0.

lim,_ oR(a)A,(r) is considered as a new type of distribution
(D/4V)O_l_¢a4_d,_2l/,f ﬁ 2 a—0 ( ) a( ) yp
Qll=1
d

x| > sinzy,)

sirfy;—2vo (functiona), which is less singular tha#’(r). Mathematical

establishment is eagerly expected.
1d Now let us imagine that we try to integrate Ed) nu-
H (dy; /). (14  merically. In this task we usually calculate E¢0) under the
- condition thatL ,t— with a and r fixed. We expect that an
asymptotic form ofw(L,t) is identical with one obtained
through the continuum limit. 1 will emphasize below, how-

Qisa peripheral region of) scaled appropriately or

(o d c ever, that the two approaches do not always reach the same
Q={ﬂ{yl;|y||$w/2}]ﬂ[m{y|:|y|l$wb/2} : goal. . . .
=1 =1 The estimation ofv(L,t) in Eq.(10) is also carried out by
The integration in Eq(14) is always bounded. dividing =, into two parts as in Eq11). The first sum yields

From Egs(12) and(14), we see that the condition result- Ed- (12) by replac;ng {1- Y(kg)} ?/T with exp(—2vk*) be-
ing in a finitew(L,t) for d<2 through the continuum limit causeY(k,)=vrki<vrd(wb)“/a°<1. Even whend>2,

is satisfied if and only if however, the divergence of the integral does not occur in the
limit due to the finitely discretized una. While Eq.(12) is
¢=d and ¢=1, (15 proportional toL2~ 9 for d<2, its most dominant term is a

constan{14] independent of. andt for d>2. On the other
while Eg. (14) vanishes in this limit. Fod<2 we could hand, the other sums in Ed11) yield Eq. (14) for t
recover Eq(4) with @=(2—d)/2 andz=2, which has been > 7/[2|In{1-Y(k,)}|1(=a?/[2v(wb)?]), giving L order
obtained by the direct integration of E¢) with Eq.(2), that  term for any dimensions. The conditiga3) is also neces-
is, under the spatiotemporal white noise assumption. sary for the Euler formula to keefl—Y(k,)| less than
Ford>2, an infrared divergence does not occur. We havaunity.
then immediately Eq(14), where the integration region is It is concluded therefore that through the latter lirtlit
replaced with Q= m|d= Aviilvil=#/2}. In order to let andt—c with fixed a and 7) we have the same exponents
w(L,t) be finite, the condition for « andz as obtained through the continuum linGé& and
7—0 with fixed L and t). Remember, however, that the
4—p—2¢4=0 (16 above can be obtained without specifying the valuespof
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and ¢. Even if we put¢=d and =1 (the spatiotemporal
Gaussian white noigdor d>2, the finite value ofv(L,t) is
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original continuum model, the numerical integration should
be carried out by taking limits od, 7— 0 for givenL andt,

realized, contradicting the result of the continuum limit. This however it looks troublesome.
suggests in general that we must reconsider carefully (4) There are a lot of discrete versions converging in the
whether the naive numerical integration of SDEs gives theedwards-Wilkinson equation through continuum limits. In

continuum limit result.
In summary we have clarified the following:
(1) The scaling exponents of the EW model are

a=2-d)2, B=(2—d)/4, z=2  for 1=d<2,

a=pB=0, z=2 for d>2.

There should appear logarithmic corrections wiekn 2.
Negativea for d>2 cannot be justified]3—5,10.

the present paper | have taken into account three routes from
Egs. (5), (7), and (1) with Eq. (17). Ford<2, we have the
same result ofv(L,t) through all routes, while fod>2 the
value ofw(L,t) (=cons) depends on how to approach the
continuum model due to different microscopic situations.
However, the exponents including zero themselves remain
unchanged irrespective to the routes.

The above conclusions have been obtained within a linear
theory. However, the assertion that the spatiotemporal white

(2) In spaces with dimension higher than two, the correnoise assumption turns out valid due to some nonlinear effect
lation between the random variables should be weakened necessary to be proved. For the Kardar-Parisi-Zhang equa-

|nf|n|tES|ma”y to obtain the phySical SO'UFion- irrelevant t.O tion [7], therefore, careful reconsideration of random vari-
the choice of the cutoff. The exponents satisfying the relatioyples must be required fa>2. Work on this problem is

(16) correspond to the less singular correlation than éhe
function. Nevertheless the random noises are indispensab

Planned for the near future.
€ | would like to refer mathematical literature, where the

to exclude a simply decaying solution. This is understandrg|ated problems have been treated. In IRE5] the theorem
able from an intuitive argument; while in lower dimensions hat a heat equation with a noisy force, equivalent to the
fluctuations induced by the spatiotemporal Gaussian Whit@ arqar-Parisi-Zhang equation, has a unique distribution-
noise are crucial in that they keep accumulating to yield the,ajeq solution foxd>2 has been proved. Unfortunately the
rough surface solution; they are too strong to form the suryg|ytion belongs to the? class, being inappropriate for the
face in higher dimensions due to the fluctuation accumulagrowing surface problem. In addition Walsh showed in Ref.
tion from surroundings. If one continues to add the noise tc[16] that the stochastic wave equation has only a solution as

the system, the solution may become the sum fafnctions.
(3) We have given an example that the two limigs,
7— 0 with fixedL,t andL,t—c0 with fixed a, 7) do not lead

a distribution valued stochastic process fx 2.
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